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Abstract 

It has been pointed out that DEA scores may be influenced by several external 

environmental factors, which are uncontrollable for DMUs. It implies that the DEA 

efficiency score without data adjustment might be biased and impractical for measuring 

genuine management efficiency. Therefore it is essential to eliminate uncontrollable 

effects from DEA scores and evaluate “pure” managerial efficiency for DMUs.  

In an effort to solve this problem, we employ a multi-stage data adjustment procedure 

using DEA and regression models, which is originally proposed by Fried et al. [1999] 

consisting of four stages. In this study, we further modify this procedure by introducing 

newly developed devices in each stage; Connected Slacks-Based Measure (CSBM) 

model at the first and fourth stages, the Tobit model with DMU dummies at the second 

stage, and a data tuning procedure at the third stage. Then we decompose the technical 

inefficiency into three factors, i.e. environmental effects, time shift effects and pure 

technical inefficiency. Lastly, we apply this procedure to the electric power utilities in 

Japan and the US and compare their pure technical efficiency and causes of inefficiency. 
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1 Introduction 

Data Envelopment Analysis (DEA) is a representative method to measure 

management efficiency of Decision Making Units (DMUs) such as economic entities, 

and plenty of researchers have applied it to empirical studies in various industries. 

Generally, DEA models measure relative efficiency scores of DMUs based on an 

efficiency frontier, which enables us to compare efficiency performance among DMUs. 

However, it has been pointed out that DEA scores may be influenced by external 

environmental factors, which are beyond the control of DMUs. It implies that the DEA 

efficiency score without data adjustment might be biased and impractical. Thus, we 

must eliminate these uncontrollable effects from DEA scores in order to evaluate “pure” 

managerial inefficiency of DMUs. In an effort to overcome this difficulty, several 

previous studies attempted to resolve it and proposed new methods.  

This study follows the multi-stage data adjustment procedure developed by Fried et 

al. [1999], and further modifies the procedure using DEA and Tobit with DMU-specific 

dummies, which enables us to keep advantages of two different parametric models 

employed by previous studies, i.e. Stochastic Frontier Analysis (SFA) and Tobit models. 

In addition, Connected Slacks-Based Measure (CSBM) model (Avkiran, Tone and 

Tsutsui [2007]) and a new data tuning procedure (Tone and Tsutsui [2007b]) are also 

employed as components of the multi-stage procedure.  

This study is organized as follows. In Section 2, we review previous studies on data 

adjustment for DEA scores, and then explain our multi-stage data adjustment procedure 

in the third section. Furthermore, we develop this procedure to time series analysis in 

Section 4. Then our procedure is applied to vertically integrated electric power 

companies in Japan and the US as an empirical study in Section 5. Section 6 concludes 
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this study and mentions future extensions. 

2 Literature review 

In consideration of external environmental effects on DEA efficiency scores, several 

measures have been proposed by previous studies (see Fried et al. [1999]).  

In the frontier separation approach (Charnes et al. [1981], Fizel and Nunnikhoven 

[1992]), DMUs are classified based on a categorical variable such as ownership 

structure or regional characteristics, and are evaluated by referring to a frontier for each 

category and a pooled frontier as well. The impact of the external environment 

explained by categorical data is measured by comparing efficiency scores between the 

categorical and the pooled frontiers. This approach however considers only one 

categorical variable as the external environmental effect, even though various factors 

may have an influence on DEA scores.  

Banker and Morey [1986] introduced a DEA model that directly includes external 

fixed inputs and outputs as uncontrollable factors for DMUs. This model can deal with 

more than one feature of external environments and non-categorical data. In this model 

we need to define external variables as inputs or outputs in advance. However, we 

sometimes do not know whether the external environmental elements have an impact on 

efficiency scores positively or negatively. Thus, knowing the amount and direction of 

such external influences are other important subjects of our research.  

Timmer [1971] proposed a basic idea of a two-stage model, and several empirical 

works employed this model, in which the DEA score is measured in the traditional way 

in the 1st stage and then used as the dependent variable of a regression analysis in the 2nd 
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stage (see Fizel and Nunnikhoven [1992], McCarty and Yaisawarng [1993], 

Bhattacharyya et al. [1997]). The external environmental variables are used as 

independent variables that explain the variations in the efficiency score. In this model, 

we need not specify the direction of external effects on efficiency in advance because 

the regression coefficients in the 2nd stage will inform us the direction by the sign of 

coefficients.  

Fried et al. [1993] and Goto and Tsutsui [2003] also employed the two-stage model, 

but they used the slack of each component instead of the efficiency score as the 

dependent variable. Because efficiency score measured by a radial model neglects 

slacks, it might give misleading results if slacks have an important role in evaluating the 

managerial efficiency. The two-stage model using slacks as a dependent variable can 

consider the portion that the radial efficiency score does not consider, and thus, it brings 

us closer to an unbiased estimator.  

In these previous studies, Tobit model was preferred to Ordinary Least Squares 

(OLS) as a regression because DEA efficiency scores are censored from above at one2 

and it provides unbiased estimator. Bhattacharyya et al. [1997] used SFA rather than 

OLS or Tobit. SFA is a representative method of efficiency measurement originally 

developed by three papers that were published nearly simultaneously; Aigner et al. 

[1977], Meeusen and van den Broeck [1977] and Battese and Corra [1977]. In SFA, the 

error term consists of two components; statistical noise that is assumed to be 

independent and identically distributed (i.i.d.), and an efficiency component based on a 

specific distributional assumption, e.g. a half normal distribution. Thus, the DEA 

                                                 
2 Contrary to DEA efficiency scores, slacks are censored from below at zero. 
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efficiency score (dependent variable) can be decomposed into three components by 

SFA; environmental effects, statistical error, and managerial efficiency terms.  

Although the two-stage model does consider and reveal the effects of external 

variables on efficiency scores or slacks, it cannot provide an integrated efficiency score 

after exclusion of these effects. Fried et al. [1999] proposed a multi-stage approach to 

obtain an integrated pure managerial efficiency score eliminating external effects and 

statistical error. In this model, in the same manner as the two-stage model, slacks of 

each input or output are measured by DEA in the 1st stage, and then they are used as 

dependent variables in the regression model in the 2nd stage. Independent variables are 

external environmental variables that are uncontrollable by management of DMUs and 

assumed to be influential on the slacks that represent inefficiency. Then, in the 3rd stage, 

the actual data are adjusted by the environmental effect term consists of environmental 

variables and their coefficients and the error term estimated in the previous stage. In the 

final stage, the DEA model is rerun using the adjusted data. Through this multi-stage 

procedure, we can obtain the adjusted efficiency score, which can be regarded as a 

measure of “pure” managerial efficiency.  

Fried et al. [1999] pointed out that this multi-stage approach has four advantages; 1) 

the final result is an integrated index, 2) it is not necessary to specify the direction of 

external effects on efficiency in advance, 3) the direction of environmental effects can 

be tested, and 4) it does not neglect slacks latent in the radial model. 

This multi-stage procedure was employed in several studies with further 

modifications. Drake et al. [2006] employed the SBM model in the 1st and 4th stages 

instead of a radial DEA model such as the CCR. In the case where a radial model is 
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used in the 1st stage, we have to merge the radial and non-radial slacks for the 2nd stage. 

SBM is contrarily a non-radial model, and thus, we can directly and consistently obtain 

the slacks of each input and output. Hahn [2004] also used the SBM model and further 

applied the bootstrap method to the regression stage in order to overcome the inherent 

dependency of efficiency scores pointed out by Xue and Harker [1999].  

Fried et al. [2002] and Liu and Tone [2006] used SFA as a regression model in the 

2nd stage, while Fried et al. [1999], Drake et al. [2006] and Hahn [2004] used the Tobit 

model. SFA in the 2nd stage helps decompose slacks into three components; 

environmental effects, statistical noise and a managerial efficiency term. However, 

these studies do not take into account that slacks are non-negative variables censored 

from below at zero, while the efficiency term estimated in the SFA model is assumed to 

have a non-negative distribution.  

In our study, we employ the Tobit model for the 2nd stage to obtain unbiased and 

consistent parameter estimates. Furthermore, we incorporate dummy variables for all 

DMUs in the Tobit model to capture the fixed effect of DMUs, which plays a similar 

role to the efficiency term of the SFA model. Thus, our approach can also decompose 

slacks into environmental effects, statistical noise and managerial efficiency terms in 

the same manner as SFA, where the managerial efficiency terms are expressed by 

dummy variables.  

In addition, we applies Connected Slacks-Based Measure (CSBM) model (Avkiran, 

Tone and Tsutsui [2007]) in the 1st and 4th stages, which resolves shortcomings of 

traditional radial and non-radial DEA models such as CCR (Charnes, Cooper and 

Rhodes [1978]) and SBM (Tone [2001]). Furthermore, we introduce a new data tuning 
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procedure in the 3rd stage, which re-adjusts the adjusted data obtained in the 2nd stage. 

The adjustment formulation of Fried et al. [1999, 2002] and Hahn [2004] might cause 

irrational DEA scores as Tone and Tsutsui [2007b] pointed out. Thus, this tuning 

procedure helps to obtain positive and feasible adjusted data.  

3 Formulations of the multi-stage data adjustment procedure 

This study separates uncontrollable factors from DEA efficiency scores using a multi-

stage data adjustment procedure, in which several new methods are incorporated in each 

stage. Our procedure consists of four stages; 1) initial measurement of slacks by CSBM, 

2) separation of uncontrollable factors using Tobit with DMU dummies, 3) adjustment 

of the observed data with a tuning procedure, and 4) re-running CSBM with tuned data. 

3.1 Initial measurement of slacks by CSBM – 1st stage 

In the 1st stage, we undertake DEA and obtain slacks for each input. In our study, we 

employ the input oriented Connected Slacks-Based Measure (CSBM-I) model, which 

links traditional CCR and SBM models in a unified framework and contributes to 

overcome shortcomings inherent in both approaches, i.e. taking into account the non-

radial slacks in the radial models such as the CCR model, and moderating the extreme 

results of the non-radial SBM models (Avkiran, Tone and Tsutsui [2007]). The input 

oriented CSBM model under the Variable Returns-to-Scale (VRS) assumption is 

formulated as follows: 



GRIPS Policy Information Center                               Discussion Paper : 07-09 

 8

 [CSBM-I-V] 

  

,
,1                  

),...,1(,

,                

, 

   ,1   s.t.

1  min

1

,,

*

0≥
=

=⋅≤≤⋅

−≤

+≥

=

−=

+

−

=

−

∑

+−

λ
eλ

sYλy

sXλx

ssλ

miSRUSRSRL

x
s

m
SR

SR

i

o

o

m

i io

i

τ

 (3.1) 

where xo and yo are the m×1 input and r×1 output vectors of DMUo ( no ,,1 Λ= ), 

respectively, and X and Y are m×n input and r×n output matrices, respectively. λ is a 

n×1 vector to indicate the intensity of reference DMUs. s− and s+ are m×1 and r×1 slack 

vectors for inputs and outputs. The ratio of a slack to an observed input xio is named the 

Slack Ratio index (
io

i
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U and L are the upper and lower bounds of the SR index for all inputs, which avoid a 

sharp contrast of the SBM results. Depending on L and U, the deviations of SR indices 

from the average value SR  are limited accordingly. If L=1 or U=1, then CSBM 

reduces to the CCR model, while if L = 0 and U ≥ m, then CSBM becomes the SBM 

model. 

In this study, we use 1SR  instead of SR  for the SR restriction, and thus the upper 

and lower bounds can be respectively define for each input as 
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where B is a 2(m−1)×m matrix that consists of Ui and −Li (i = 2,…,m) on the 1st column, 

and 1, −1 and 0 on the remaining columns. φ  is an m×1 vector of SRi (i = 1,…,m). In 

this case, if Li = 1 and Ui = 1 (i = 2,…,m), then CSBM reduces to the CCR model, while 

if Li = 0 and Ui = ∞ (i = 2,…,m), then CSBM becomes the SBM model. 

For the choice of U and L, this study assumes that input factor inefficiency for input i 

denoted by SRi is correlated in some degree with the factor productivity index such as 
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Figure 3.1 describes a simple image of equation (3.4) and a comparison of the 

projections onto the efficient frontier using respectively CCR, SBM and CSBM models.  
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Figure 3.1: The simple image of CSBM restriction 
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the efficient frontier is then given by 
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where *
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where wio is the input factor price of input i, and Co is the observed cost of DMUo. 
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3.2 Separation of uncontrollable factors using Tobit model with dummies – 2nd 

stage 

The slack *−
ios  measured in the 1st stage is employed in the regression model as 

dependent variable i
jS  (= *−

ijs ) for input i of DMUj (j=1,…,n) in the 2nd stage.  

The Tobit model for the 2nd stage can be formulated as  

   [Ordinary Tobit model for input i] 
 i

j
ii

j
i
j vzS += β*   (j=1,…,n)  (3.8) 

 where    

 
otherwise.,0

,0 if, **

=

>= i
j

i
j

i
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where i
jz  is a vector of environmental variables that is assumed to be influential on the 

slacks for input i of DMUj. While i
jS  is observable and measured in DEA model as 

*−
ijs , *i

jS  is the latent slack variable of input i for DMUj. If *i
jS > 0, i

jS  is defined as 

(3.8), and otherwise, i
jS  is observed as zero. In this model, a slack is defined as a non-

negative variable censored from below at zero.  

On the other hand, Fried et al. [2002] and Liu and Tone [2006] employed the SFA 

model as  

   [SFA model for input i] 
 i

j
i
j

ii
j

i
j vuzS ++= β .  (j=1,…,n)  (3.9) 

This model can decompose the slack variable into three factors; environmental effects 

( ii
jz β ), an efficiency component ( i

ju ) based on a specific distributional assumption 
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such as a half normal distribution, and statistical noise ( i
jv ) assumed to be independent 

and identically distributed.  

It is an advantage of SFA model to separate the efficiency component i
ju  from the 

residual. However, it does not take into consideration that slacks are non-negative 

variables censored from below at zero. Therefore, this study proposed compromised 

model as  

   [Tobit with DMU dummies for input i] 
 i

jj
ii

j
i
j vdDzS ++= );(* δβ   (j=1,…,n)       (3.10) 

 where    

 
otherwise.,0

,0 if, **

=

>= i
j

i
j

i
j SSS

 

This is the Tobit model where the slack variable is considered as non-negative 

censored variable. Furthermore, the dependent variable of (3.10) is decomposed into 

three factors same as SFA model, but the second component D(dj; δ ) is a DMU dummy 

term with a parameter vector δ and a dummy variable dj for DMUj. This term implies 

the fixed effects of DMUs and plays a similar role to the efficiency term i
ju  of the 

SFA model. Consequently, it can be said that our model keeps advantages of both SFA 

and ordinary Tobit models.  

Through this regression stage, we can identify uncontrollable factors for DMUs such 

as the environmental effects ( *ˆ ii
jz β ) and the statistical error ( i

jv̂ ).  

3.3 Adjustment of the observed data with a new tuning procedure – 3rd stage 

To eliminate uncontrollable factors, we adjust the observed input data as 
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where *ˆ iβ  and i
jv̂  are estimated values in the 2nd stage. We notice that insignificant 

components of *ˆ iβ  are replaced by zeros.  

However, the adjusted value ai
jx  in (3.11) has a possibility to be negative. We re-run 

the SBM-based DEA model in the final stage, which does not accept negative value. 

Thus, adjusted data should be positive. 

In order to obtain a non-negative adjusted value, Fried et al. [1996, 2002] and Harn 

[2004] employed a formula as 

 { } { } ⎥⎦
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j vvzzxx ˆˆmaxˆˆmax * ββ .  (3.12) 

This formula adjusts environmental effects to the common operating environment, i.e. 

the least favorable environment3, and we can obtain non-negative adjusted value 

through (3.12).  

However, (3.12) is equal to (3.11) added by { } { }i
jj

ii
jj

vz ˆmaxˆmax * +β  that is the 

common value through all observations. As Tone and Tsutsui [2007b] pointed out, the 

new data generated by adding a certain value can result in irrational DEA scores. 

Therefore, we readjust input data using the tuning scheme proposed by Tone and 

Tsutsui [2007b] as  

                                                 
3 In the case of most favorable environment, { } { }⎥⎦

⎤
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⎤
⎢⎣
⎡ −+= i
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i
j

ii
jj
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j

i
j

ai
j vvzzxx ˆminˆˆminˆ *ββ  is utilized. 
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As Figure 3.2 explains, the readjusted data Ai
jx  remains in the range of the original 

observed data i
jx , and has the same ranking with the adjusted data ai

jx . These 

properties are appealing in eliminating ambiguity regarding the range of adjusted input 

values that influence the DEA scores significantly. 
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Figure 3.2: Tuning the adjusted data 

3.4 Re-running CSBM model using the tuned data – 4th stage 

After conducting the Tobit model with DMU dummies for all m slacks, adjusting and 

tuning input data, we re-run the CSBM model with readjusted data A
ox (o = 1,…,n) and 

),...,( A
n

A
1

A xxX =  instead of xo and X in (3.1). It can be said that the new efficiency 

score obtained at this stage reflects the pure managerial efficiency for each DMU. 

4 Measuring time shift effect 

In addition to cross sectional analysis, time series analysis, which captures the 
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efficiency development over time, is an important research subject for dealing with 

panel data.  

However, similarly to the cross sectional DEA efficiency scores we have mentioned 

in previous sections, the time shift effect measured by DEA also might be influenced by 

the external environmental effects. Thus, in this section, we attempt to detach the time 

shift effect from the environmental effects using our multi-stage procedure. 

4.1 Time shift effect based on individual frontiers  

For time series analysis, there are two approaches in DEA for measuring technical 

efficiency. One is to define the yearly efficiency frontiers, on which DMUs at the 

corresponding year are respectively evaluated, and the other is to evaluate DMUs by 

one pooled frontier for overall years.  

If we define the efficiency frontier for each year, we can obtain not only a technical 

efficiency index (TE) for each year but also a frontier shift index (FS), which implies 

technical change in the industry. Figure 4.1 exhibits a simple example describing these 

two indices of a particular DMU operating at two different points in two different time 

periods. Assuming that DMUo operates at point X1 in period 1 and at X2 in period 2, the 

technical efficiency of DMUo in period 1 and 2 are, respectively, TE1 and TE2 (light 

gray lines), which are independently measured based on the frontiers 1 and 2 (f 1 and f 2), 

respectively.  
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Figure 4.1: Technical efficiency and frontier shift effect 

It should be noted that TE1 and TE2 are not consistently comparable, because they are 

independent. For the consistent time shift analysis, we have to measure technical 

efficiency on the same basis. If we take into account the frontier shift effect between 

these two periods (FS12: dark gray line) adding to the TE1 and TE2,4 we can compare 

the technical efficiency of DMUo with respect to the single common frontier f 2.5 

This method has an advantage for the time series analysis to capture technical 

efficiency of each period separated from the technical change (frontier shift) of the 

industry (Färe et al. [1989]). However, especially for unbalanced panel data, in which 

the numbers of DMUs across years are not identical, it might be difficult to obtain 

credible efficiency scores, because frontiers are measured by the different numbers of 

DMUs year by year6. In addition, as we noticed, the frontier shift FS12 in Figure 4.1 

might be influenced by environmental factors similarly to the technical efficiency scores. 

Thus we should eliminate these factors to obtain practical indices helpful to 

                                                 
4 For instance, Malmquist index is a representative index that takes into account both technical efficiency score and 

frontier shift effect (Caves, Christensen and Diewert [1982]).  
5 We can also consider frontier 1 as a basis. Färe et al. [1989] defined frontier shift index as the geometric mean of 

FS indices on the frontier 1 and 2 bases. 
6 Especially in a period with less DMUs, the credibility goes down.  
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management. If we apply the multi-stage data adjustment procedure using DEA and 

Tobit with DMU dummies explained in Section 3, it must be too complicated to conduct 

Tobit models for both technical efficiency and frontier shift indices individually.  

4.2 Time shift effect based on pooled frontier 

On the other hand, we can also measure comparable technical efficiency scores based 

on the pooled frontier as described in Figure 4.2. In this case, we pool the whole data 

and define the overall efficiency frontier (f 

ALL) for the full study period. This enables us 

to consistently measure efficiency scores on the same basis f 

ALL and to treat the 

unbalanced panel data.  

 

X1

fALL  

X2

XT 
Technical efficiency 

at period 1:  

1)(
1

1
1 ≤=

X
XfTE

ALL
 

O 

fALL (X1)

x1 

x2 

 
Figure 4.2: Technical efficiency on the pooled frontier 

However, this cannot separate the time shift effect from the efficiency score. Thus, in 

our study, we attempt to separate the time shift effect from the DEA scores by the multi-

stage data adjustment procedure in the same manner as the environmental effects. Using 

this procedure, we can obtain the environmental effects and the time shift effect together 

in a single Tobit model. 
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4.3 The 2nd stage regression model for time shift effect 

For capturing the time shift effect, we add time trend variable (TTj) to the Tobit with 

DMU dummies for input i in the 2nd stage as 

 i
jj

i
TTj

ii
j

i
j vdDTTzS +++= );(* δββ .  (j = 1,…,n)7   (4.1) 

Then we assume two different adjusted datasets using the estimated values at the 3rd 

stage as  

  i
j

i
TTj

ii
j

i
j

ai
j vTTzxx ˆˆˆ ** −−−= ββ , (excluding time trend) (4.2)  

 i
j

ii
j

i
j

aTi
j vzxx ˆˆ * −−= β ,  (including time trend) (4.3) 

where ai
jx  and aTi

jx  are the adjusted data excluding and including time shift effect, 

respectively, while i
jx  is the observed input data. Then we re-run two DEA models 

respectively using Ai
jx  and ATi

jx , which are the tuned data of ai
jx  and aTi

jx  as 

explained in Section 3.3. Consequently, we can describe two different frontiers as 

Figure 4.3. If we assume a positive technical change, a frontier should shift toward the 

origin because of utilizing less inputs, thus a frontier including time trend (f in) measured 

by ATi
jx  should be located closer to the origin than a frontier excluding time trend (f ex) 

measured by Ai
jx . We define the gap between the two frontiers indicates the technical 

change (TC) during the whole periods. Meanwhile, the deviation of adjusted data (XA in 

the Figure 4.3) from the frontier f ex indicates pure technical inefficiency. 

                                                 
7 Since we treat the data as pooled, the number of observed DMUs in the whole periods is n.  
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Figure 4.3: Time shift effect using the adjusted data 
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However, if a negative technical change is observed, f in will be located farther from 

the origin than f ex. To avoid this case, we employed a “cumulative frontier”, for which 

we measure the f in using both Ai
jx  and ATi

jx , while f ex is measured only by Ai
jx . This 

guarantees TC ≥ 1 and gives a score unity to TC in the backward frontier shifts case. 

As an extension of this model, we can also utilize time dummy variables (dt) instead 

of TTj in equation (4.1) in order to capture the frontier shift effect year by year. Using 

the estimated parameters, we obtain the adjusted data as 

                                                 
8 This is a case of radial model as Figure 4.3. In this study, we employed non-radial model, and thus we will redefine 

PTE in the non-radial case in Section 5.3.  
9 Same as PTE, we will redefine TC for the non-radial model in Section 5.3.  
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  i
jtt

ii
j

i
j

Ai
jt vdzxx ˆˆˆ * −−−= δβ .  (4.6) 

It should be pointed out that using (4.6) we can generate n×T balanced panel data 

based on the estimated coefficients, thus it enables us to measure the consistent 

efficiency measure through the study period because the number of DMUs are same 

across years. In this study, we will also utilize this extensional model in Section 5. 

5 Application to electric power companies in Japan and the US 

5.1 Input and output variables for DEA models 

In Japan, there are ten vertically integrated electric utilities; however, this study 

excluded one of them—Okinawa Electric Power Company —because Okinawa is very 

small and only services customers in the Okinawa islands. We selected US investor 

owned vertically integrated companies that were comparable to the Japanese companies 

with respect to the volume of electric power sales. After eliminating missing values and 

outliers by box plots, we obtained 407 unbalanced panel data from 1990 to 2001 with 

56 companies (9 Japanese and 47 US). 

The vertically integrated electric power companies consist of several divisions such 

as generation, transmission, distribution, retail sales and so forth. In this study the 

vertical structure of electric power companies is defined as described in Figure 5.1, and 

efficiency scores are measured by the network DEA model proposed by Tsutsui and 

Tone [2007], which takes into account the stream-lined vertical structure of companies.  
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Figure 5.1: Structure of vertically integrated company 

In the generation division (node 1), companies use capital, labor and fuel inputs (x1). 

The capital input is the total nameplate capacity of electricity power plants measured in 

Mega Watts (MW), the labor input is the number of employees of this division, and fuel 

input is the consumed fuel at power plants. Since fuel consumption units differ amongst 

gas, coal, and petroleum, they were converted to British Thermal Units (BTU) in order 

to sum up the fossil fuel data. In contrast, the heat quantity from consumed nuclear fuel 

is difficult to measure. We thus performed backward calculations with the amount of 

nuclear power generation, assuming the thermal efficiency to be 0.32.  

Using these three inputs, the generation division produces electric power (y1), which 

is measured in Mega Watt hours (MWh). Then it becomes an intermediate input for the 

transmission division (node 2). 

In the transmission division, we assumed three exogenous inputs (x2) and one 

intermediate input (y1). The capital input is the transmission line length (kilo meter: km) 

and the labor input is the number of employees in this division. Furthermore, we 
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employed purchased power measured in MWh as an exogenous input. Electric power 

companies have two alternative power sources for supplying energy to customers; their 

own electric power plants and purchased power from other companies. The intermediate 

input (y1) corresponds to the former source, and the third exogenous input corresponds 

to the latter one.  

Electricity through transmission lines is sent to distribution lines. However 

distribution lines are used by only small customers such as residential. This study 

assumes that large customers such as industrial do not use distribution lines and are 

supplied electricity directly from transmission lines, while residential customers are 

supplied via distribution lines. Therefore, outputs of the transmission division are 

divided into two, i.e. electricity sent to small customers (y2) and large customers (y3).  

The distribution division (node 3) uses capital and labor inputs (x3) and the 

intermediate input from the transmission division (y2). The capital input is the total 

capacity of transformers measured in Mega Volt Ampere (MVA), and the labor input is 

the number of employees in this division. The output of this division is also electricity 

to small customers (y4) after eliminating the estimated distribution losses.  

The sales division (node 4) provides electricity supply services to large and small 

customers. In our structure, this division uses a labor input as an exogenous input (x4) 

and two intermediate inputs (y3 and y4), and produces the final output (y5), which is the 

sum of y3 and y4. Table 5.1 shows input and output items for all four divisions.  
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Table 5.1: Dataset of all divisions 

G1 Capital Input Nameplate Capacity (MW)
G2 Labor Input Number of Employess (#)
G3 Fuel Input Fuel Consumption (BTU)

Output
⇒ Intermediate Input

T1 Capital Input Transmission Line Length (km)
T2 Labor Input Number of Employess (#)
T3 Purchased Power Purchased power (MWh)

Output Electric Power Transmitted
to large customers(MWh)

Output
⇒ Intermediate Input

D1 Capital Input Transformer Capacity (MVA)
D2 Labor Input Number of Employess (#)

Output
⇒ Intermediate Input

⇒ Intermediate Input Electric Power Transmitted
to large customers(MWh)

x4 S1 Labor Input Number of Employess (#)
Final Output Total Electric Power Sales (MWh)

Input and output factors

Electric Power Generated (MWh)

Electric Power Distributed
to small customers(MWh)
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x1

Electric Power Transmitted
to small customers(MWh)

x2

x3

y3

y5
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y3

y2

y4

 

5.2 Environmental variables for the Tobit models 

Furthermore, we used several environmental variables as explanatory variables of the 

Tobit models for data adjustment. In this study, we assumed that the composition of 

power source and characteristics of customer base were uncontrollable for electric 

utilities. Major power sources are fossil power fueled by oil, coal and gas, nuclear 

power, and hydraulic power. Generally the construction time of power plants is very 

long and it would be reasonable and proper to assume that the power composition is 

uncontrollable for utilities in the short-term, even if they can choose the energy mix in 

the long term. In our study, the characteristics of customer base, i.e. ratio of industrial, 

commercial, and residential customers, were also assumed to be uncontrollable, while it 

might be controllable in the long term, especially in the liberalized market. In addition, 

we employed time trend variable for capturing time shift effect explained in Section 4. 

Table 5.2 explains those uncontrollable variables for each input item. 
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Table 5.2: Environmental variables  

CR Commercial Customer Ratio (%)
NR Nuclear Power Ratio (%)
HR Hydraulic Power Ratio (%)
TT Time Trend
NR Nuclear Power Ratio (%)
HR Hydraulic Power Ratio (%)
MW Nameplate Capacity (MW)
TT Time Trend
NR Nuclear Power Ratio (%)
HR Hydraulic Power Ratio (%)
TT Time Trend

DEN Customer Density (#)
GR Generation Power Ratio (%)
KM Transmission Line Length (km)
TT Time Trend

DEN Customer Density (#)
TT Time Trend

DEN Customer Density (#)
MVA Transfomer Capacity (MVA)
TT Time Trend

DEN Customer Density (#)
CUS Total Number of Customers (#)
LR Large Customer Ratio (%)
TT Time Trend

Uncontrollable variables for input

-  -

-  -

G1:Capital Input

G2:Labor Input

G3:Fuel Input

S1:Labor Input

x1

x3

x4

D1:Capital Input

D2:Labor Input

T2:Labor Inputx2

T3:Purchased Power

T1:Capital Input
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n
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n
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As the uncontrollable variables for the generation capital input, we utilized 

commercial customer ratio (CR), nuclear power ratio (NR), hydraulic power ratio (HR), 

and time trend10 (TT). Efficiency of capital utilization is strongly influenced by the load 

factor, i.e. low load factor causes inefficiency. Generally commercial customers have 

negative influence on load factor because their demands fluctuate more than those of 

industrial and residential customers. Therefore, we assume CR is positively influential 

on the slack. The sign of NR coefficient will be positive because of huge size of nuclear 

power plants, while HR will be negative. TT will explain the technical change of this 

input, e.g. if the coefficient of TT is negative, we can observe positive technical change.  

For the generation labor input, we utilized NR, HR and TT as uncontrollable factors. 

We assume NR will have a positive impact on slacks because nuclear power plants need 

                                                 
10 In this study, we utilized 0 to 11 as time trend variable for 1990 to 2001, respectively.  
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more employees than hydraulic ones, while HR will have a negative impact. In addition, 

we employed nameplate capacity (MW) in order to test the direction of the effect.  

Fuel slack will depend on composition of power sources, i.e. HR must be negative 

because hydraulic power plant does not consume any explicit fuel and thus this study 

did not take account of it in the fuel data. On the other hand, NR might have a positive 

effect because of its huge heat quantity estimated from generated power. 

For the slacks in the transmission division, we adjusted only the labor input, for 

which we utilized transmission line length (KM), customer density (DEN), generated 

power ratio to the total supplied electricity (GR), and TT as environmental explanatory 

variables. In the high-density area, labor productivity might be higher, thus it will have 

a negative impact on the slack. KM and GR were employed in order to test the direction 

of the effect. As we mentioned, a utility can procure electricity both from its own power 

plants and from other companies as purchased power. Thus, GR implies the ratio of 

self-sustaining. If we assume that high self-sustaining companies own more 

transmission assets, the GR would have a positive effect on the transmission labor slack. 

In this study, we exempted the transmission capital and purchased power inputs from 

evaluation of their technical efficiency, thus making no adjustments. Concerning the 

capital input, the slack must be dependent on the service area, i.e. the transmission line 

length must be longer in the large service area than in the small area. However we could 

not obtain data on service area, and thus we regarded transmission line length as a given 

value in this study and did not evaluate its technical inefficiency. Also the slack of 

purchased power was not evaluated because it plays a role as adjuster in supplying 

energy. Generally, a large amount of input relative to outputs results in technical 
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inefficiency of DMUs in the input-oriented model. However, in this case, it should be 

unpractical to evaluate DMUs as technical inefficient if they purchase large amount of 

electric power from other companies, because they might be efficient by reducing their 

own generation assets (capital input) instead of increase in the purchased power. 

For the slack of the distribution capital and labor inputs, we employed DEN and TT. 

DEN might have a negative impact on these slacks because capital and labor 

productivities might be higher in a high-density area. In addition, we utilized 

transformer capacity (MVA) as an explanatory variable for the labor input slack. It is 

also assumed to have a negative impact because the work force required depends on the 

number of transformers rather than its capacity size, thus as MVA gets higher slack gets 

smaller. 

In the sales division, the slack of labor input was regressed by DEN, the total number 

of customers (CUS), the large customer ratio (LR), and TT. Similarly to the distribution 

division, the labor productivity is supposed to be higher in the high-density area, so that 

it might have a negative impact on the slack. Concerning CUS, we assumed that the 

utilities with many customers would have an advantage, and the coefficient would be 

negative. LR was employed in order to test the direction of its effects. If LR is positive, 

it is concluded that utilities use more work force to serve large customers.  

The Japanese dataset for this study was obtained from the “Handbook of Electric 

Power Industry” published by the Federation of Electric Power Companies (FEPC) in 

Japan, while the US dataset was constructed from the “FORM No.1” and “FORM 

No.423” published by the Federal Energy Regulatory Commission (FERC) and “Form 

EIA-860” published by Energy Information Administration (EIA).  
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5.3 Decomposition of technical efficiency index 

As we pointed out earlier, DEA technical efficiency scores measured by equation 

(3.1) may be influenced by external environmental effects. If a DMU operates in a bad 

condition, its efficiency score might be worse than those of the others in a favorable 

condition. The multi-stage data adjusted model explained in Section 3 enables us to 

exclude the effect of unfavorable conditions from efficiency scores and to obtain “pure” 

technical efficiency scores. In this context, the gap between pure and non-pure 

efficiency scores implies the environmental effects.  

However, the pure scores measured on the adjusted data are not guaranteed to be 

higher than those before adjustment for all DMUs. Thus, we added the restrictions of 

the SR indices to (3.1) as 

A
ioA

io

A
io

io

io
io SR

x
s

x
sSR =≥=

−− **

, (i=1,…, m)  for adjusted data excluding time shift  (5.1) 

AT
ioAT

io

AT
io

io

io
io SR

x
s

x
sSR =≥=

−− **

, (i=1,…, m)  for adjusted data including time shift  (5.2) 

where superscript A and AT indicate the optimal value of the model on the adjusted data 

excluding and including time shift, respectively. These restrictions guarantee new DEA 

scores for all DMUs are higher than those pre-adjustment. Thus, the pure technical 

efficient input excluding time shift *A
iox  and including time shift *AT

iox  are respectively 

defined as  

  io
A
ioio

A
io xSRxx ≤−= )1(* ,   (5.3) 

  ** )1()1( ioioio
AT

ioio
AT
io xSRxSRxx =−≥−= . (5.4) 
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In addition, pure technical efficient costs excluding and including time shift effect 

( A
oC  and AT

oC ) can be respectively expressed as  

  o
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where wio, Co and TE
oC  are respectively the input factor price of input i, the observed 

cost and the technically efficient cost for DMUo defined in equation (3.6). 

In this study, we assumed “cumulative frontier” for the frontier including time shift 

(fin) to avoid the case of negative technical change as explained in Section 4.3. In 

particular, f in was measured using both A
ix  and AT

ix , while f ex was measured only by 

A
ix . This assumption leads to the inequality as  

   )()( A
io
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ex xfxf ≥ ,  (5.7) 

where we define the projected values of A
iox  on f ex and f in respectively as  

 [Projection on f ex]: )1()( * A
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Then the relationships between *A
iox  and *AT

iox , and A
oC  and AT

oC  are respectively, 

  ** )1()1( AT
io

AT
ioio

A
ioio

A
io xSRxSRxx =−≥−= , (5.10) 

  AT
o

m

i

AT
ioio

m

i

A
ioio

A
o CxwxwC =∑≥∑=

== 1

*

1

* .  (5.11) 



GRIPS Policy Information Center                               Discussion Paper : 07-09 

 29

Equations (5.5), (5.6) and (5.11) lead to the following inequalities: 

  o
A
o

AT
o

TE
o CCCC ≤≤≤ .  (5.12) 

Then we redefine11 the PTE and TC using the ratios of these costs as 

 [Pure Technical Efficiency: PTE] 1≤=
o

A
o

o C
CPTE ,  (5.13) 

 [Technical Change: TC]  1≥= AT
o

A
o

o C
CTC .  (5.14) 

Furthermore, based on inequality (5.12), we define the differences of these various 

costs as: 

 [Technical Inefficient cost] )0(≥−= TE
oo

TI
o CCC , (5.15) 

 [Pure Technical Inefficient cost] )0(≥−= A
oo

PTI
o CCC , (5.16) 

 [Technical Shift Effect]  )0(≥−= AT
o

A
o

TSE
o CCC , (5.17) 

 [Environmental Effect]  )0(≥−= TE
o

AT
o

EE
o CCC . (5.18) 

Thus, the actual cost Co can be decomposed into technical efficient cost ( TE
oC ) and 

technical inefficient cost ( TI
oC ), which can be further decomposed into three factors as  

  
.EE

o
TSE

o
PTI

o
TE
o

TI
o
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CCCC

CCC

+++=

+=
  (5.19) 

 
                                                 
11 See Section 4.3, where we defined these indices for a radial model. 



GRIPS Policy Information Center                               Discussion Paper : 07-09 

 30

Then we can introduce the following additive form with Technical Efficiency index 

(TE), Pure Technical Inefficiency index (PTI), Time Shift Effect index (TSE) and 

Environmental Effect index (EE).  
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Figure 5.2 depicts the decomposition of technical inefficiency (TI) into three factors. 

 

PTITechnical Efficiency (TE) TSE EE 

Technical Inefficiency (TI) 

 
PTI: Pure Technical Inefficiency, TSE: Time Shift Effect, EE: Environmental Effects 

Figure 5.2: Decomposition of technical inefficiency (TI) 

5.4 Empirical results 

Figure 5.3 exhibits the results of technical efficiency (TE) on average for Japanese 

and the US electric power companies from 1990 to 2001. The average TE scores of both 

countries do not make much difference.  

0% 20% 40% 60% 80% 100%

JP

US

TE TI

 
Figure 5.3: Comparison of technical efficiency (TE) 

However, causes of technical inefficiency (TI) might be different between two 

countries. The decomposition procedure explained in Section 5.3 specifies the main 
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cause of TI. Figure 5.4 focuses on the TI, i.e. the dark-gray portion of the bar graph on 

the right-hand side in Figure 5.3. 
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Figure 5.4: Decomposition of technical inefficiency (TI) 

EE and TSE in Figure 5.4 were measured based on the results of Tobit model with 

DMU dummies as shown in Table 5.3.  

Table 5.3: Result of Tobit model with DMU dummies 
G1 T1 D1

Coef. t Coef. t
CR 0.321 (2.23) ** DEN -0.406 (-8.92) ***
NR 1.059 (4.49) *** TT -0.004 (-3.60) ***
HR 0.098 (0.48)
TT -0.004 (-4.23) ***
Log likelihood 559.18 Log likelihood 521.55

G2 T2 D2
Coef. t Coef. t Coef. t

NR 3.761 (2.70) *** DEN -0.098 (-1.64) DEN -0.986 (-9.58) ***
HR 0.050 (0.04) GR -0.143 (-1.83) * MVA -1.072 (-12.60) ***
MW 0.110 (0.60) KM 0.015 (0.53) TT -0.013 (-4.06) ***
TT -0.073 (-11.61) *** TT -0.006 (-3.68) ***
Log likelihood -92.96 Log likelihood 256.86 Log likelihood 254.07

G3 T3 S1
Coef. t Coef. t

NR 0.501 (2.21) ** CUS -0.754 (-5.94) ***
HR -0.511 (-2.59) ** DEN -0.373 (-2.53) **
TT -0.002 (-2.78) *** LR -0.751 (-1.09)

TT -0.019 (-4.46) ***
Log likelihood 580.44 Log likelihood 60.83  

***: 1% significance level, **: 5% significance level, *: 10% significance level 

 

In this case, Environmental Effects (EE) in Figure 5.4 account for 30% and 15% of TI 
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(1.7% and 1.2% of actual cost Co) in Japan and the US, respectively. In addition, 

compared to the TSE of the US (18% of TI and 1.4% of Co), little time shift effect is 

observed in Japan (2% of TI and 0.1% of Co). It is pointed out that the technology of 

electric power industry is already saturated in Japan and drastic frontier shift could not 

be expected unless development and introduction of innovative technology, e.g. 

inexpensive decentralized power system. Several previous studies also observed little 

frontier shift in Japanese electric power industry, e.g. Tsutsui [2000] and Hattori [2002]. 

Both environmental and time shift effects are regarded as uncontrollable factors for 

DMUs in this study, and eliminated from DEA scores. In Japan, EE is larger than TSE, 

and vice versa in the US. As a result, the total effects of EE and TSE are nearly same 

between both countries, i.e. 32-3% of TI, and therefore pure technical inefficiency (PTI) 

scores also show insignificant difference as 3.8% and 5.4% of Co, respectively. 

While TSE in Figure 5.4 indicates the effect during the whole study period, Figure 5.5 

describes the cumulative time shift effect year by year, which is captured by the time 

dummies defined in equation (4.6).   

100%
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Figure 5.5: Cumulative frontier shift from 1990 to 2001 
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The result of Japan is relatively larger than that of Figure 5.4. However, in either case, 

the frontier shift is quite small.  

6 Concluding remarks 

This study introduced the modified multi-stage data adjustment procedure in order to 

detach environmental and time shift effects from DEA scores and obtain pure technical 

efficiency scores. Our procedure incorporated Tobit with DMU-specific dummies in 2nd 

stage. This scheme keeps advantages of two different models employed by previous 

studies, i.e. SFA and Tobit models. In addition, we employed the CSBM model which 

resolved shortcomings of traditional radial and non-radial DEA models in the 1st and 4th 

stages, and also utilized the new data tuning procedure in the 3rd stage, which enabled us 

to obtain positive and feasible adjusted data. Our procedure was applied to the electric 

power companies in Japan and the US as an empirical study, and decomposed technical 

inefficiency of both countries into environmental and time shift effects and pure 

technical inefficiency on cost basis.  

This procedure can be also applied to the price efficiency, which is proposed by Tone 

and Tsutsui [2007a], and will be helpful to separate the external effects from DEA score 

and obtain the “pure” price inefficiency.  
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