{"created":"2023-06-20T15:03:18.500577+00:00","id":1363,"links":{},"metadata":{"_buckets":{"deposit":"11d84d93-7cf8-4d82-a999-a5011859acbb"},"_deposit":{"created_by":16,"id":"1363","owners":[16],"pid":{"revision_id":0,"type":"depid","value":"1363"},"status":"published"},"_oai":{"id":"oai:grips.repo.nii.ac.jp:00001363","sets":["52:53"]},"author_link":["7849","7848"],"item_10002_biblio_info_31":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1985-09","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"B-1","bibliographicVolumeNumber":"85","bibliographic_titles":[{"bibliographic_title":"Institute for Policy Science research report. B","bibliographic_titleLang":"en"}]}]},"item_10002_description_29":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"We present a polynomial time algorithm for solving linear programming problems based on a combination of Karmarkar's new LP algorithm and Dantzig's simplex method. Instead of the orthogonal projection of Karmarkar's method, we introduce a projection on a basis system in the projected affine manifold in order to determine the search direction. Then a line search on the direction gives the next point in the iterations. The optimal solution is usually obtained as a basic solution and the dual solution is available at the same time. The proposed method is essentially a reduced gradient method on the projected manifold.","subitem_description_type":"Abstract"}]},"item_10002_full_name_27":{"attribute_name":"著者別名","attribute_value_mlt":[{"nameIdentifiers":[{"nameIdentifier":"7849","nameIdentifierScheme":"WEKO"}],"names":[{"name":"刀根, 薫","nameLang":"ja"}]}]},"item_10002_link_46":{"attribute_name":"著者情報","attribute_value_mlt":[{"subitem_link_text":"https://www.grips.ac.jp/list/facultyinfo/tone_kaoru/","subitem_link_url":"https://www.grips.ac.jp/list/facultyinfo/tone_kaoru/"}]},"item_10002_publisher_32":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Technology Policy Science, Saitama Univ","subitem_publisher_language":"en"}]},"item_10002_version_type_42":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_ab4af688f83e57aa","subitem_version_type":"AM"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"TONE, Kaoru","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"7848","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","filename":"85-B-1.pdf","filesize":[{"value":"456.3 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"85-B-1.pdf","url":"https://grips.repo.nii.ac.jp/record/1363/files/85-B-1.pdf"},"version_id":"2ad8f516-b9e3-4802-8431-001368b27252"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Linear Programming","subitem_subject_scheme":"Other"},{"subitem_subject":"Karmarkar's Method","subitem_subject_scheme":"Other"},{"subitem_subject":"Simplex Method","subitem_subject_scheme":"Other"},{"subitem_subject":"Reduced Gradient Method","subitem_subject_scheme":"Other"},{"subitem_subject":"Polynomial Time Algorithm","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"A Hybrid Method for Linear Programming","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"A Hybrid Method for Linear Programming","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"16","path":["53"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2016-04-13"},"publish_date":"2016-04-13","publish_status":"0","recid":"1363","relation_version_is_last":true,"title":["A Hybrid Method for Linear Programming"],"weko_creator_id":"16","weko_shared_id":-1},"updated":"2023-12-14T04:14:47.619078+00:00"}