ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 会議発表資料
  2. Workshop 2015 - Advances in DEA Theory and Applications (December 1-2, 2015)

Combining Support Vector Machine and Data Envelopment Analysis to Predict Corporate Failure for Nonmanufacturing Firms

https://doi.org/10.24545/00001411
https://doi.org/10.24545/00001411
966e8e39-bcca-4a31-bab5-fe15b4b718ef
名前 / ファイル ライセンス アクション
11-20_Yang,Dimitrov.pdf 11-20_Yang,Dimitrov.pdf (101.5 kB)
Item type 会議発表用資料 / Conference paper(1)
公開日 2016-06-06
タイトル
タイトル Combining Support Vector Machine and Data Envelopment Analysis to Predict Corporate Failure for Nonmanufacturing Firms
言語 en
言語
言語 eng
キーワード
主題Scheme Other
主題 support vector machine (SVM)
キーワード
主題Scheme Other
主題 data envelopment analysis (DEA)
キーワード
主題Scheme Other
主題 corporate failure
キーワード
主題Scheme Other
主題 nonmanufacturing firms
キーワード
主題Scheme Other
主題 predictions
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
ID登録
ID登録 10.24545/00001411
ID登録タイプ JaLC
著者 YANG, Xiaopeng

× YANG, Xiaopeng

en YANG, Xiaopeng

Search repository
DIMITROV, Stanko

× DIMITROV, Stanko

en DIMITROV, Stanko

Search repository
会議概要
内容記述タイプ Other
内容記述 Workshop 2015 -Advances in DEA Theory and Applications (December 1-2, 2015)
抄録
内容記述タイプ Abstract
内容記述 Research on corporate failure prediction has drawn numerous scholars’ attention because of its usefulness in corporate risk management, as well as in regulating corporate operational status. Most previous research related to this topic focused on manufacturing companies and relied heavily on corporate assets. The asset size of a manufacturing company plays a vital role in traditional research methods; Altman’s Z score model is one such traditional method. However, very limited number of research studied corporate failure prediction for nonmanufacturing companies as the operational status of such companies is not solely correlated to their assets. In this manuscript we use support vector machines (SVMs) and data envelopment analysis (DEA) to provide a new method for predicting corporate failure of nonmanufacturing firms. We first generate efficiency scores using a slack-based measure (SBM) DEA model, using the recent three years historical data of nonmanufacturing firms; then we used SVMs to classify bankrupt firms and healthy ones. We show that using DEA scores as the only inputs into SVMs predict corporate failure more accurately than using the entire raw data available.
内容記述
内容記述タイプ Other
内容記述 The workshop is supported by JSPS (Japan Society for the Promotion of Science), Grant-in-Aid for Scientific Research (B), #25282090, titled “Studies in Theory and Applications of DEA for Forecasting Purpose.
内容記述
内容記述タイプ Other
内容記述 本研究はJSPS科研費 基盤研究(B) 25282090の助成を受けたものです。
発表年月日
日付 2015-12-01
日付タイプ Issued
書誌情報
p. 11-20
公開者
出版者 出版社不明
関連サイト
関連タイプ isDerivedFrom
識別子タイプ URI
関連識別子 http://www.grips.ac.jp/jp/oldseminars/20151105-3601/
関連名称 http://www.grips.ac.jp/jp/oldseminars/20151105-3601/
著者版フラグ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 15:31:02.276540
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3