WEKO3
アイテム
Resampling in DEA
https://doi.org/10.24545/00001133
https://doi.org/10.24545/000011336445b25c-e9d7-4e00-8778-80d810ea6e77
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | ディスカッションペーパー / Discussion Paper(1) | |||||||
---|---|---|---|---|---|---|---|---|
公開日 | 2013-12-06 | |||||||
タイトル | ||||||||
タイトル | Resampling in DEA | |||||||
言語 | en | |||||||
言語 | ||||||||
言語 | eng | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | Data error | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | resampling | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | triangular distribution | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | confidence interval | |||||||
キーワード | ||||||||
主題Scheme | Other | |||||||
主題 | past-present-future intertemporal DEA | |||||||
資源タイプ | ||||||||
資源タイプ | technical report | |||||||
ID登録 | ||||||||
ID登録 (DOI) | 10.24545/00001133 | |||||||
ID登録タイプ | JaLC | |||||||
著者 |
TONE, Kaoru
× TONE, Kaoru
|
|||||||
著者別名 | ||||||||
識別子Scheme | WEKO | |||||||
識別子 | 6763 | |||||||
姓名 | 刀根, 薫 | |||||||
言語 | ja | |||||||
著者所属 | ||||||||
値 | 政策研究大学院大学 / National Graduate Institute for Policy Studies | |||||||
分野 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | 総合政策 / Multi Disciplinary policy studies | |||||||
抄録 | ||||||||
内容記述タイプ | Abstract | |||||||
内容記述 | In this paper, we propose new resampling models in data envelopment analysis (DEA). Input/output values are subject to change for several reasons, e.g., measurement errors, hysteretic factors, arbitrariness and so on. Furthermore, these variations differ in their input/output items and their decision-making units (DMU). Hence, DEA efficiency scores need to be examined by considering these factors. Resampling based on these variations is necessary for gauging the confidence interval of DEA scores. We propose three resampling models. The first one assumes downside and upside measurement error rates for each input/output, which are common to all DMUs. We resample data following the triangular distribution that the downside and upside errors indicate around the observed data. The second model utilizes historical data, e.g., past-present, for estimating data variations, imposing chronological order weights which are supplied by Lucas series (a variant of Fibonacci series). The last one deals with future prospects. This model aims at forecasting the future efficiency score and its confidence interval for each DMU. | |||||||
発行年 | ||||||||
値 | 2013-12 | |||||||
書誌情報 |
en : GRIPS Discussion Papers Report No. DP13-23, 発行日 2013-12-06 |
|||||||
出版者 | ||||||||
出版者 | GRIPS Policy Research Center | |||||||
言語 | en | |||||||
関連サイト | ||||||||
関連タイプ | isIdenticalTo | |||||||
識別子タイプ | URI | |||||||
関連識別子 | https://ideas.repec.org/p/ngi/dpaper/13-23.html | |||||||
関連名称 | https://ideas.repec.org/p/ngi/dpaper/13-23.html | |||||||
著者情報 | ||||||||
内容記述タイプ | Other | |||||||
内容記述 | https://www.grips.ac.jp/list/facultyinfo/tone_kaoru/ | |||||||
著者版フラグ | ||||||||
出版タイプ | AM | |||||||
出版タイプResource | http://purl.org/coar/version/c_ab4af688f83e57aa |